Question Paper Code : X 60768

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Fourth Semester Electronics and Communication Engineering MA 2261/MA 45/MA 1253/080380009/10177 PR 401 – PROBABILITY AND RANDOM PROCESSES (Common to Biomedical Engineering) (Regulations 2008/2010)

Time : Three Hours

Maximum : 100 Marks

(Use of Statistical tables is permitted)

Answer ALL questions

PART - A

(10×2=20 Marks)

1. The cumulative distribution function of the random variable X is given by

 $F_{X}(x) = \begin{cases} 0; & x < 0\\ x + \frac{1}{2}; & 0 \le x \le \frac{1}{2}, \text{ compute } P\left[X > \frac{1}{4}\right].\\ 1; & x > \frac{1}{2} \end{cases}$

2. Find the variance of the discrete random variable X with the probability mass

function
$$P_X(x) = \begin{cases} \frac{1}{3} & , x = 0\\ \frac{1}{2} & , x = 2 \end{cases}$$
.

- 3. The joint pdf of (X, Y) is given by $f(x, y) = k xye^{-(x^2 + y^2)}$; x > 0, y > 0. Find the value of k.
- 4. Define the distribution function of two dimensional random variable (X, Y). State any one property.
- 5. Define a strictly stationary random process.
- 6. Prove that sum of two independent Poisson processes is again a Poisson process.

X 60768

- 7. A random process X(t) is defined by $X(t) = K \cos \omega t$, $t \ge 0$ where ω is a constant and K is uniformly distributed over (0, 2). Find the autocorrelation function of X(t).
- 8. Define cross correlation function of X(t) and Y(t). When do you say that they are independent ?
- 9. Define white noise process.
- 10. Define linear time invariant system.

11. a) i) A random variable X has pdf
$$f_x(x) = \begin{cases} kx^2e^{-x}; & x > 0\\ 0 & \text{otherwise} \end{cases}$$
. Find the rth moment of X about origin. Hence find the mean and variance. (8)

ii) A random variable X is uniformly distributed over (0, 10). Find 1) P(X < 3), P(X > 7) and P(2 < X < 5) 2) P(X = 7). (8)

- b) i) An office has four phone lines. Each is busy about 10% of the time. Assume that the phone lines act independently.
 - 1) What is the probability that all four phones are busy?
 - 2) What is the probability that atleast two of them are busy? (6)
 - ii) Describe gamma distribution. Obtain its moment generating function. Hence, compute its mean and variance. (10)
- 12. a) i) State and prove central limit theorem for independently and identically distributed (iid) random variables. (6)
 - ii) If X and Y are independent RVs with pdf's e^{-x} ; $x \ge 0$ and e^{-y} ; $y \ge 0$, respectively, find the pdfs of $U = \frac{X}{X+Y}$ and V = X + Y. Are U and V independent? (10) (OR)
 - b) The joint probability mass function of (X, Y) is given by p(x, y) = k(2x + 3y), x = 0, 1, 2; y = 1, 2, 3. Find all the marginal and conditional probability distributions. Also find the probability distribution of (X + Y).
- 13. a) i) Examine whether X(t) = A cos\lambdat + B sin\lambdat where A and B are random variables such that E(A) = E(B) = 0; E(A²) = E(B²); E(AB) = 0, is wide sense stationary.
 - ii) Find the auto correlation function of the Poisson process.

(8)

X 60768

- b) i) Suppose X(t) is a normal process with mean $\mu(t) = 3$, $C_x(t_1, t_2) = 4e^{-0.2|t_1 t_2|}$. Find P(X(5) ≤ 2) and P(|X(8) - X(5)| ≤ 1). (8)
 - ii) Define a random telegraph process. Show that it is a covariance stationary process.(8)
- 14. a) i) Find the spectral density of a WSS random process {X(t)} whose autocorrelation function is $e^{\frac{-\alpha^2 t^2}{2}}$. (8)
 - ii) Find the autocorrelation function of the WSS process {X(t)} whose spectral density is given by $S(\omega) = \frac{1}{(1 + \omega^2)^2}$. (8) (OR)
 - b) i) The cross-power spectrum of real random process {X(t)} and {Y(t)} is given by $S_{XY}(\omega) = \begin{cases} a + jb\omega, & |\omega| < 1 \\ 0 & elsewhere \end{cases}$. Find the cross-correlation function. (8)
 - ii) Determine the cross correlation function corresponding to the cross-power density spectrum $S_{XY}(\omega) = \frac{8}{(\alpha + j\omega)^3}$, where $\alpha > 0$ is a constant. (8)
- 15. a) i) Show that if the input $\{X(t)\}$ is a WSS process for a linear system then output $\{Y(t)\}$ is a WSS process. Also find $R_{xy}(\tau)$. (8)
 - ii) If X(t) is the input voltage to a circuit and Y(t) is the output voltage. {X(t)} is a stationary random process with $\mu_X = 0$ and $R_{XX}(\tau) = e^{-2|\tau|}$. Find the mean μ_Y and power spectrum $S_{YY}(\omega)$ of the output if the system transfer function is given by $H(\omega) = \frac{1}{\omega + 2i}$. (8)
 - b) i) If $Y(t) = A\cos(\omega_0 t + \theta) + N(t)$, where A is a constant, θ is a random variable with a uniform distribution in $(-\pi, \pi)$ and $\{N(t)\}$ is a band-limited Gaussian

white noise with power spectral density $S_{NN}(\omega) = \begin{cases} \frac{N_0}{2}, & \text{for } | \omega - \omega_0 | < \omega_B \\ 0, & \text{elsewhere} \end{cases}$.

Find the power spectral density $\{Y(t)\}$. Assume that $\{N(t)\}$ and θ are independent. (10)

ii) A system has an impulse response $h(t) = e^{-\beta t} U(t)$, find the power spectral density of the output Y(t) corresponding to the input X(t). (6)